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Figure 1. Expression of the AKAP95 protein in pericarcinoma specimens and rectal cancer tissues (×400). A. No 
expression of AKAP95 in pericarcinoma rectal tissues; B. Positive expression of AKAP95 in rectal cancer tissues. 
The protein was mainly expressed in the nucleus, and a marginal proportion was found in the cytoplasm; C. Positive 
expression in cytoplasm and cell nuclei in poorly differentiated rectal adenocarcinoma; D. High expression in cell 
nuclei of moderately differentiated rectal adenocarcinoma tissues; E and J. Low expression in cell nuclei of poorly 
differentiated rectal mucinous adenocarcinoma tissues; F. Low expression in the cell nuclei in poorly differentiated 
rectum adenocarcinoma tissues; G. Low expression in the cell nuclei and cytoplasm in moderately differentiated 
rectal mucinous adenocarcinoma tissue; H. Negative expression in highly differentiated rectal adenocarcinoma tis-
sues; I. High expression in cell nuclei in highly differentiated rectal adenocarcinoma tissues; K. Negative expression 
in rectal signet-ring cell carcinoma tissues.
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and rectal cancer tissues was mainly located  
in the cell nucleus, while a marginal portion 
was located in the cytoplasm (Figure 1). The 
positive rate of Cyclin E1 expression was 
62.00% in rectal cancer tissues (31/50), but 
only 6.25% in pericarcinoma specimens (1/16). 
The Cyclin E1 protein in rectal cancer tissues 
was mainly in the cytoplasm and less repre-
sented in the cell nucleus (Figure 2). The posi-
tive rates of Cyclin D1 expression were 72.00% 
(36/50) and 31.25% (5/16) in rectal cancer tis-
sues and pericarcinoma tissues, respectively. 
The Cyclin D1 protein in rectal cancer and peri-
carcinoma tissues was mainly confined to the 
cytoplasm (Figure 3). The positive rates of 
AKAP95, Cyclin E1, and Cyclin D1 protein 
expression were all significantly higher in can-
cer tissues compared with pericarcinoma spec-
imens (P < 0.01 or 0.05); in contrast, Cx43 pro-
tein expression was lower in cancer tissues 
compared with pericarcinoma samples, alth- 
ough the difference was not statistically signifi-
cant (P > 0.05); the Cx43 protein was also 
mainly located in the cytoplasm of rectal can-
cer cells (Figure 4).

Correlations among the expression of the 
AKAP95, Cyclin E1, Cyclin D1, and Cx43 pro-
teins in rectal cancer tissues

As shown in Tables 2-7, significant correla- 
tions were obtained between the protein 
expression rates of AKAP95 and Cyclin E1 
(Table 2), Cyclin E1 and Cyclin D1 (Table 3), 
Cyclin E1 and Cx43 (Table 4), and Cyclin D1 and 
Cx43 (Table 5) (P < 0.05) in rectal cancer speci-
mens; no significant correlation was found 
between the expression rates of AKAP95 and 
Cyclin D1 (Table 6) as well as AKAP95 and 
Cx43 (Table 7) (P > 0.05).

Correlations between pathological parameters 
and protein expression rates of AKAP95, Cyclin 
E1, Cyclin D1, and Cx43 in rectal cancer tis-
sues

No significant association was found be- 
tween the protein expression rates of AKAP95, 
Cyclin E1, Cyclin D1, and Cx43 and the degree 
of differentiation, histological type, and lymph 
node metastasis in rectal cancer tissues (P > 
0.05).

Figure 2. Expression of Cyclin E1 in pericarcinoma and rectal cancer tissues (× 400). A. Low expression of Cyclin E1 
in the cytoplasm in pericarcinoma rectal tissues; B. Negative expression in pericarcinoma rectal tissues; C and D. 
Positive expression in the cytoplasm in poorly and moderately differentiated rectal adenocarcinoma tissues, respec-
tively; E. Positive expression in highly differentiated rectal adenocarcinoma tissue; the protein was mainly expressed 
in the cytoplasm; a marginal proportion was found in the cell nucleus; F. Low expression the cytoplasm in highly 
differentiated rectal adenocarcinoma tissues; G. Positive expression in the cytoplasm in poorly differentiated rectal 
mucinous adenocarcinoma tissues; H. Negative expression in rectal signet-ring cell carcinoma tissues.

Figure 3. Expression of the Cyclin D1 protein in pericarcinoma and rectal cancer tissues (× 400). A and B. Positive 
and low cytoplasmic expression of Cyclin D1 in pericarcinoma rectal tissues; C. Negative expression in pericarci-
noma rectal tissues; D. High expression in the cytoplasm in poorly differentiated rectal adenocarcinoma tissues; E. 
Positive expression in the cytoplasm in poorly differentiated rectal mucinous adenocarcinoma tissues; F. Positive 
expression in the cytoplasm in moderately differentiated rectal adenocarcinoma tissues; G and H. Negative expres-
sion in moderately differentiated rectal adenocarcinoma and signet-ring cell carcinoma tissues.
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Discussion

The AKAP95 protein is mainly expressed in the 
cell nucleus; it participates in signal transduc-

tion, specifically in the cAMP pathway by 
anchoring the RII subunit of PKA, which phos-
phorylates target proteins [1]; in addition, 
AKAP59 also plays a role in chromosome con-

Figure 4. Expression of the Cx43 protein in pericarcinoma and rectal cancer tissues (× 400). A. Positive cytoplasmic 
expression of Cx43 in pericarcinoma rectal tissues; B. Negative expression in pericarcinoma rectal tissues; C. Low 
expression in the cytoplasm in poorly differentiated rectal adenocarcinoma tissues; D and E. Negative expression 
in poorly and moderately differentiated rectal adenocarcinoma tissues, respectively; F. Low expression in the cyto-
plasm in poorly differentiated rectal mucinous adenocarcinoma tissues; G. Positive expression in the cytoplasm in 
moderately differentiated rectal adenocarcinoma tissues; H and I. Negative expression in moderately differentiated 
rectal adenocarcinoma and signet-ring cell carcinoma tissues.

Table 2. Correlation between the protein 
expression rates of AKAP95 and Cyclin E1 in 
rectal cancer tissues

AKAP95
Cyclin E1

rs P
- +- + ++ +++

- 7 2 2 2 1 0.353 0.012
+- 0 2 4 3 0
+ 2 3 4 4 4
++ 1 1 1 2 3
+++ 0 1 0 1 0
rs: Spearman’s rank correlation coefficient.

Table 3. Correlation between the protein 
expression rates of Cyclin E1 and Cyclin D1 in 
rectal cancer tissues

Cyclin E1
Cyclin D1

rs P
- +- + ++ +++

- 3 2 2 3 0 0.421 0.002
+- 0 3 4 2 0
+ 1 1 3 4 2
++ 1 3 2 4 2
+++ 0 0 1 4 3
rs: Spearman’s rank correlation coefficient. 
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