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endothelial progenitor cells (EPCs) are respon-
sible for the repair of injured endothelial mono-
layer and its level reflects endothelial repair 
capacity. The status of circulating EPCs serves 
as a marker of endothelial dysfunction and  
vascular health, and the level of circulating 
EPCs could be used as an indicator of collective 

Medical University. A signed written informed 
consent was obtained from each participant.

Thirty stroke patients between 55-70 years old 
after first stroke and confirmed as a single 
lesions infarction by cranial CT scan and cere-
bral angiography (Figure 1) and 30 gender and 
age-matched healthy individuals (Table 1) with 
the absence of previous heart and brain vascu-
lar infarction confirmed by cranial CT scan and 
electrocardiogram were recruited. Fifteen milli-
liter peripheral blood was drawn from healthy 
controls or from patients 7 days after stroke.

Isolation and identification of EPCs

Mononuclear cells were isolated from citrate-
anticoagulated peripheral blood by Percoll den-
sity gradient centrifugation and cultured in 
DMEM containing 10% FBS, 10 ng/ml reco- 
mbinant vascular endothelial growth factor 
(rhVEGF), 10 ng/ml basic fibroblast growth fac-
tor (bFGF) (both from ProSpec, East Brunswick, 
NJ), 100 µg/ml ampicillin, and 100 U/ml strep-
tomycin (All media, serum, and antibiotics are 
from Invitrogen, Shanghai, China) at 37°C in a 
humidified condition with 5% CO2.

Table 1. Clinical data of stroke patients and 
healthy subjects

Controls Patients
Gender
    Male 16 15
    Female 14 15
Age (year)
Average (range) 67.3 (55-70) 66.8 (55-70)
Indications
    Hyperlipidimia 11
    Hypertension 17
    Diabetes 5
    Highhomocysteine 12
National Institutes of Health Stroke Scale (NIHSS)
    Average (Range) 23 (7-36)

Figure 1. The images of cranial CT scan and cerebral angiography im-
ages of two patients.

cardiovascular risk [10, 11]. The 
reduction of circulating EPCs is an 
independent predictor of athero-
sclerotic disease progression and 
future cardiovascular events [12]. 
On the other hand, a quick mobili-
zation from bone marrow and a 
rapid increase of circulating EPCs 
have been associated with Moya- 
moyadisease, acute myocardial in- 
farction, and acute ischemic st- 
roke [13-15]. However, the physio-
logical characteristics of the EPCs 
after acute stroke have not been 
well studied. This study aimed to 
characterize the EPCs from stroke 
patients in terms of proliferation, 
mobility, and long-term viability  
in comparison to the EPCs from 
healthy individuals.

Materials and methods

Study subjects

This study protocol is in conformity 
with the Declaration of Helsinki 
and approved by the institution 
review committee of Chongqing 
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After 10-day culture, cells were washed with 
PBS three times for 5 min each and incubated 
in complete media containing 10 μg/mL Dil-ac-
LDL (Sigma, St Louis, MO) for 4 h at 37°C, 5% 
CO2. Cells were then washed three times with 
PBS for 5 min each, fixed with 3% paraformal-
dehyde for 15 min, and incubated with 10 μg/
ml FITC-UEA-1 (Invitrogen, Shanghai, China) at 
room temperature for 1 h. Cells were observed 
using a Nikon eclipse E600 fluorescence micro-
scope (Nikon, Shanghai, China).

MTT assay

After specified culture time, the medium was 
removed and replaced with culture medium 
containing 0.5 mg/ml of MTT (3-(4,5-dimeth- 
ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 
Sigma, St. Louis, Mo.). The cells were cultured 
at 37°C for 4 hours before removing medium, 
adding 150 μl dimethyl sulfoxide (Sigma, St. 
Louis, Mo.), and shaking in dark for 10 min. The 
absorbance was measured on a microplate 
reader (Molecular Devices, Shanghai, China) at 
a wavelength of 490 nm.

The motility of EPS assessed by migration 
assay

The EPCs cultured 3 days in vitro were used  
in migration assay. A aliquot of 200 μl of the 
EPCs (5×104/ml) cell suspension was placed 
into the upper chamber of a Corning Transwell 
24 Permeable Support Culture Plate (Sigma, St 
Lois, MO.) and 500 μl complete medium con-
taining 50 ng/ml rhVEGF and 10 ng/ml SDF-1α 
(ProSpec, East Brunswick, NJ) into the lower 
chamber. The cells were cultured 24 hrs before 
the membrane was fixed with 10% cold metha-
nol at 4°C for 10 min. The cells on the top side 
of the membrane were wiped off and the mem-
brane was stained with crystal violet. The num-
ber of migrated cells was counted in 5 random 
fields (×200).

Flow cytometry determination of the number of 
EPCs in peripheral blood

The mononuclear cells were isolated from 6 ml 
peripheral blood by density centrifugation to 
obtain and treated with 100 μl erythrocyte lysis 
buffer in dark for 10 min. The cells were washed 
with PBS and suspended in 200 μl of PBS fol-
lowed by incubating with 5 μl anti-VEGFR2-Phy-
coerythrin (PE) in dark at room temperature for 

45 min. The cells were then washed twice with 
PBS and resuspended in 100 μl PBS before 
being analyzed on a BD Accuri C6 flow cytome-
try (BD, Shanghai, China). The data was ana-
lyzed with CELLQuest software (BD, Shanghai, 
China).

Statistical analysis

The data were expressed as mean ± standard 
deviation. The difference between the groups 
was determined using a two-tailed Student’s 
t-test. A P values less than 0.05 was consid-
ered statistically significant.

Results

Stroke increased the level of EPCs in periph-
eral blood

The average levels of VEGFR2-positive EPCs  
in the mononuclear cell population of stroke 
patients 7-day post stroke was 6.13% (ranging 
4.6%-9.2%) and that of healthy controls was 
3.14% (1.3%-4.9%) (P<0.0001) (Figure 2).

Stroke promoted the differentiation of EPCs 
into endothelial cells

The EPCs from stroke patients were able to dif-
ferentiate into endothelial cells quicker than 
their counterpart from healthy individuals. After 
12 hrs in vitro culture, while there were hardly 
any cell with morphology observed in the EPCs 
from controls, few EPCs from stroke patients 
already attached to culture plates and had 
round shape (Figure 3A). After 3 days, the 
patient source EPCs started to show spindle 
shape while the EPCs from controls had irregu-
lar shapes and evolved into spindle shape  
at day 7 when the majority of the EPCs from 
patients already possessed the morphology of 
cobblestone (Figure 3A). Double-labeling with 
Dil-ac-LDL and FITC-UEA-1 also showed a simi-
lar trend that EPCs from healthy controls had 
mostly spindle shape with those from stroke 
patients showed a cobblestone morphology 
(Figure 3B).

Stroke changed the growth characteristics of 
EPCs

The EPCs from stroke patients grew significant-
ly faster than those from normal controls at the 
early stage of culture in vitro but their prolifera-
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Figure 2. The levels of circulating endothe-
lial progenitor cells were increased by acute 
ischemic stroke. A. The representative his-
tograms of circulating VEGFR2+ EPCs from 
stroke patients and healthy controls. B. The 
average levels of circulating EPCs of stroke 
patients and healthy controls.
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tion was markedly slowed down at later culture 
time compared EPCs from healthy individuals 

(Figure 4). The OD 490 from MTT assay for 
EPCs from stroke patients was 0.11 and  
0.256 after 12 hrs and 3 days culture, which 
was significantly higher than the reading of 
0.085 (P<0.05) and 0.144 (P<0.01) at those 
two time points for healthy controls. This grow- 
th tread was reversed after 7 days of culture 
(Figure 4).

Stroke enhanced the motility of the early stage 
EPCs

The EPCs from stroke patients showed stronger 
migrating ability in transwell assay, where seen 
an average of almost 4 times more migrated 
cells from patients’ EPCs than that of healthy 
controls’ EPCs (387.3 cells vs 104.5 cells, 
P<0.0001) (Figure 5).

Figure 3. The growth and differentiating characteristics of EPCs from stroke patients were different from those of 
controls. A. The morphological changes of circulating EPCs during in vitro culture. B. The EPCs were identified by Dil-
ac-LDL and FITC-UEA1-Lectin double staining after 10-day culture. The majority of EPCs from controls were showing 
a spindle shape while most patients’ EPCs had cobblestone morphology.

Figure 4. The proliferation rate of circulating EPCs 
was affected by stroke. The proliferation of EPCs was 
measured with MTT assay at different culture time. 
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Discussion

The cerebrovascular ischemia caused by stro- 
ke causes a wide range of physiological and 
molecular changes. EPCs were mobilized after 
stroke resulting in significantly higher percent-
age of EPCs in the mononuclear cell population 
of patients than that in healthy subjects. The 
EPCs from stroke patients had higher proliferat-
ing power at very early stage in in vitro culture 
and exhibited higher differentiation tendency. 

Acute ischemic stroke caused EPC mobiliz- 
ation and increased the number of circulating 
EPCs [15, 16] and endothelial cells [16]. The 
number of circulating EPCs was peaked at day 
7 post-stroke and then tapered off [15, 17]. 
However, the levels of CD133+/CD34+ and 
VEGFR2+/CD34+ EPCs were found significantly 
decreased 2 days after acute ischemic stroke 
[17, 18]. The inconsistence among those stud-
ies might root from the analyzed population  
of CD133+/CD34+/VEGFR2+ EPCs [15] and 
those of CD133+/CD34+ [18] and VEGFR2+/
CD34+ cells [17, 18]. The difference might also 
be due to the disease types, time points, and 
study population.

The level of circulating EPCs has been shown to 
predict the long term prognosis in ischemic 
stroke patients [15, 18-21] and db/db mouse 

the number of circulating EPCs, promoted their 
differentiation into endothelial cells, and in- 
creased their migrating ability, which would 
help the repair of injured vascular endothelium. 
The two phased in vitro proliferation rate of 
EPCs from stroke patients in comparison with 
EPCs from health subjects confirmed that pati- 
ents’ EPCs were at a later differentiation stage.
It would be medically important to investigate 
whether transplantation of late stage EPCs 
could be more efficient in managing stroke 
than naïve EPCs.

In conclusion, the ischemic insult from stroke 
triggered the mobilization of endothelial pro-
genitor cells from bone marrow into peripheral 
blood to increase the level of circulating EPCs. 
Meanwhile, stroke also changes the character-
istics of the EPC population by increasing their 
motility, early time proliferation, and differentia-
tion towards endothelial fate, which might help 
the neuronal and vascular recoveries.
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model [22], which provided the 
rationale for stem/progenitor cell 
therapy. Injecting human circu-
lating EPCs [23], human late out-
growth EPCs [24], human umbili-
cal cord blood-derived AC133+ 
EPCs [25], rat bone marrow de- 
rived EPCs [26], or CXCR4-prim- 
ed EPCs [27] into rodents with 
middle cerebral artery occlusion 
significantly reduced infarct vol-
ume, cortex atrophy, neuronal 
apoptosis, and inflammation and 
improved neurobehavioral out-
comes. Those results further co- 
nfirmed the potential of using 
EPCs as a therapeutic agent for 
stroke and other acute vascular 
incidences.

With in vitro culture and Dil-ac-
LDL and FITC-UEA-1-Lectin dou-
ble staining [28], we demonstrat-
ed that acute stroke increased 
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