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medium without icariin served as negative control, while the osteogenic induction group served as positive control. 
Data are mean ± standard deviation (SD). *P<0.05 and **P<0.01 indicate statistically significant differences be-
tween the experimental (treated with 10-6 M icariin) and control (no icariin) groups at the same time point.

Figure 8. Alkaline phosphatase (ALP) and alizarin red (ARS) staining. (A-D) ALP staining of BMSCs at 7 days. ALP ex-
pression levels were significantly enhanced with BMSCs treated with 10-6 M/L icariin (B, D) compared with complete 
medium (A, C). Magnification ×100 (C, D), ×200 (A, B); (E, F) Alizarin red staining of BMSCs at 21 days. Calcium 
nodules were formed only with BMSCs cultured in 10-6 M/L icariin loaded medium (F) compared with complete 
medium (E). Magnification ×100.

although not statistically significant. According 
to the results of cell proliferation and alkaline 

phosphatase activity assays, 1×10-6 mol/l ICA 
was selected for subsequent experiments.
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ICA up-regulates osteogenic related genes in 
BMSCs

To assess the gene expression levels of osteo-
genic genes in BMSCs after 10-6 mol/l ICA 
induction, bFGF, OCN, osterix, and Runx-2 were 
quantified by real-time fluorescence quantita-
tive PCR at 3, 5, and 7 days, respectively (Figure 
6). At 5 days after ICA induction, the expression 
levels of the osteogenic related genes bFGF 
,OCN, osterix, and Runx-2 were overtly increased 
compared with those of the negative control 
(NC) group, with statistically significant differ-
ences (P<0.01). The expression levels of bFGF 
in the ICA group were higher than that of the NC 
group at 7 days (P<0.01). 

ICA up-regulates osteogenic related proteins in 
BMSCs

To assess the effect of ICA on osteogenic relat-
ed proteins in BMSCs, the latter were stimulat-
ed with 10-6 mol/l ICA for 4, 6, and 8 days, 
respectively. The results showed that protein 
expression levels of Runx-2 were increased by 
1.5 to 2 fold in the 10-6 mol/l ICA group com-
pared to the negative control group (Figure 7B). 
Similar findings were obtained for OCN (Figure 
7C). Specifically, at 8 days, the Runx-2 protein 
was less expressed that at 6 days; at 8 days, 
the late protein OCN showed higher amounts 
than that at 4, 6 days. These results were in 
accordance with qPCR data, and indicated that 
10-6 mol/l ICA could upregulate osteogenic pro-
teins in BMSCs in vitro.

ICA enhances early osteogenic differentiation 
and final mineralization in BMSCs

BMSCs were plated into 6-well plates (105 
cells/well). Seven days after treatment with 
10-6 mol/l ICA, expression levels of the early 
osteogenic differentiation marker ALP were sig-
nificantly enhanced compared with control cells 
(Figure 8A-D). Furthermore, Alizarin red stain-
ing at 21 days revealed a significant increase in 
calcium deposition after ICA treatment (Figure 
8E, 8F). These results are consistent with gene 
and protein expression patterns of osteogenic 
markers in BMSCs. Taken together, these find-
ings indicated that 10-6 mol/l ICA promoted 
osteogenic activity in BMSCs.

Discussion 

BMSCs are widely used in bone tissue engi-
neering; under appropriate conditions, they can 

be stimulated into osteoblasts, fat cells, and 
cartilage cells, by cell differentiation. However, 
BMSCs only constitute 0.01% of bone marrow 
cells [26-28]; bone marrow adherent cells in 
addition to BMSCs, are also mixed with fibro-
blasts and various stromal cells. This study 
used the whole bone marrow culture method; 
cell isolation involves a great deal of suspen-
sion blood cells and various adherent cells of 
the bone marrow. According to growth charac-
teristics of bone marrow cells, we adopted dif-
ferent ways to exclude them one type at the 
time, to obtain high purity BMSCs. Non-adhe- 
rent blood cells could be removed by changing 
the medium. For adherent cells, removal was 
performed by adjusting the trypsin digestion 
time (0.25% of pancreatic enzyme for 2 min); 
macrophages and fibroblasts attached tightly 
to the plate cannot be digested in 2 min, and 
could be cultured. Despite the International 
Association of Cell Therapy appraisal standard 
for human BMSCs [29], appraisal standards 
remain to be explored for other species. 
Currently, whether a group of cells are mesen-
chymal stem cells can only be based on cell 
morphology, multi-directional differentiation 
properties, and cell biology indexes [30]. We 
found that dog BMSCs (dBMSCs) were adher-
ent and fusiform, with typical fibroblast mor-
phology; after induction into osteogenesis and 
adipocytes, calcium nodules and lipid droplets 
can be observed, respectively. This means 
dBMSCs have the characteristics of stem cells, 
and can be used for bone tissue engineering.

A suitable concentration of traditional Chinese 
medicine in dBMSCs should be determined. In 
this study, 10-9~10-6 mol/L ICA significantly pro-
moted dBMSC proliferation and alkaline phos-
phatase activity. We integrated cell prolifera-
tion and osteogenesis differentiation, and se- 
lected the optimal concentration to be 10-6 
mol/L ICA. ALP, which is necessary in osteo-
blasts for calcium salt deposition, is an impor-
tant component involved in bone metabolism; it 
is also the most commonly used biochemical 
marker of bone formation [31], and the ess- 
ential condition for mineralization. By hydrolyz-
ing organophosphates, ALP releases inorganic 
phosphorus, promoting calcium phosphate pre-
cipitation. Meanwhile, ALP degrades calcifica-
tion inhibitors, initiates and furthers the calcifi-
cation process, and participates in the synthe-
sis of inorganic calcium phosphate [32]. ALP is 
the specific enzyme in bone formation [33], and 
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its activity largely reflects the state and degree 
of osteoblast differentiation and maturation. 
Indeed, high ALP activity indicates the differen-
tiation of BMSCs to osteoblasts [34]. In this 
study, the ICA group showed significantly higher 
ALP activity compared with the control group.

Osteoblasts synthesize and secrete bFGF, OCN, 
Osterix and Runx-2 [35]. Real-time PCR was 
performed for detecting the gene expression 
levels of bFGF, OCN, Osterix and Runx-2, while 
Western blot was carried out to assess OPN, 
OCN and Runx-2 for protein expression, to con-
firm the effect of ICA on BMSC osteogenesis. 
As shown above, 10-6 mol/L ICA significantly 
upregulated osteogenesis related factors in 
dBMSCs, both at the gene and protein levels.

Osteoblasts cultured in vitro can continuously 
deposit calcium salts and form calcium nod-
ules [36], the formation of mineralized nodules 
is a unique sign to osteoblasts. We used 10-6 
mol/L ICA to treat dBMSCs for 21 d, and white 
nodules formed at the bottom of the dish were 
visible to the naked eyes. After alizarin red 
staining, much more calcium nodules were ob- 
served in the experimental group compared 
with the control group, consistent with ALP data 
in the early stage of osteogenesis. These find-
ings confirmed that osteogenesis induced in 
cultured dBMSCs results in the production of 
osteoblast calcium nodules, demonstrating th- 
at ICA dose dependently promotes osteogenet-
ic differentiation of dBMSCs.

In summary, ICA improves BMSC proliferation 
and alkaline phosphatase activity, and induces 
the differentiation of beagle’s BMSCs, increas-
ing the expression of osteogenesis related fac-
tors at the gene and protein levels and promot-
ing osteoblast mineralization. These findings 
suggested that ICA can promote the osteoge-
netic differentiation of dBMSCs. In the current 
study, the optimal concentration of ICA was 
10-6 mol/L.
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