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by suppressing senescent evasion  
through oncogene Bmi-1
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Abstract: Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Classical treatment of glio-
blastoma includes surgical resection followed by radiation and chemotherapy. However, radio-resistance is always 
a challenge for the treatment. MicroRNA-128 was found at lower expression in glioma tissues compared to normal 
tissue. Its downstream target gene, Bmi-1, was associated with self-renewal and differentiation of neural stem cells 
and could promote the growth of glioma. Our previous studies showed that expression of Bmi-1 can increase follow-
ing exposure to X-ray radiation, implying that Bmi-1 may confer radio-resistance to glioma. However, the mechanism 
is still unclear. In this study, we found that overexpression microRNA 128 could inhibit growth of glioma cells and ex-
pression of Bmi-1 (P<0.05). Following exposure the 8 Gy X-ray, the growth of cells was inhibited in the microRNA-128 
overexpression group compared to the control group (P<0.05). Expression of Bmi-1 was also lower (P<0.05) and 
the ratio of senescent cells was higher (P<0.05) in the microRNA-128 overexpression group than the control group. 
Thus, our results suggest that overexpression of micro-RNA128 could increase the radio-sensitivity of glioma cells 
through Bmi-1. This mechanism may inhibit senescent evasion in glioma cells and provides a novel view for how 
to resolve the radio-resistance of glioma and investigate a new strategy for glioma radiation treatment regimens.
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Introduction 

Glioblastoma (GBM) is the most common and 
aggressive brain tumor in adults [1]. Therapeutic 
methods, including surgery, radiation and che-
motherapy, have been widely applied in treat-
ment of GBM. However, the overall 5-year sur-
vival of GBM is still less than 10%, and the 
median survival time is less than 2 years [2]. 
The reason why GBM has a high recurrence 
incidence and mortality is due to therapy  
resistance of GBM, especially radio-resistance. 
Increasing the sensitivity of radiation in GBM 
can significantly improve the therapeutic effect 
and benefit the patients’ survival. Therefore, it 
would be very important to investigate the 
mechanism of radio-resistance of GBM, and to 
find the ways to improve the GBM response to 
radiation.

MicroRNAs are generally 18-24 nucleotides 
long expressing small non-coding RNAs, which 

can regulate gene expression through binding 
target mRNAs [3, 4]. Many microRNAs have 
been demonstrated to play very important roles 
in cell proliferation [5], differentiation [6], apop-
tosis [7], senescence [8] and stem cell mainte-
nance [9]. It has been found that microRNAs 
are involved in many malignant tumors as onco-
genes or anti-oncogenes [10, 11]. MicroRNA- 
128 distributes in brain specifically, and it was 
found be down-regulated in glioma [12]. Ho- 
wever, the role of microRNA-128 in the radio-
resistance of glioma has yet not been eluci- 
dated.

B lymphoma mouse Moloney leukemia virus 
insertion region 1 (Bmi-1) belongs to polycomb 
protein family. In many cancers, expression of 
Bmi-1 is up-regulated so that it is regarded as 
an oncogene, including in glioma [13-15]. The 
function of Bmi-1 has been demonstrated to be 
associated with neural stem cell renewal [16]. 
Our previous studies showed that expression of 
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Bmi-1 can increase following exposure to X-ray 
radiation, which may imply that Bmi-1 is involved 
in radio-resistance of glioma [17]. However, the 
mechanism is still unclear.

Our previous finding showed that microR-
NA128a and Bmi-1 may be involved in glioma 
radio-resistance by affecting senescence in 
human U87 glioma cells [17, 18]. In this study, 
we performed further research to investigate 
the role of microRNA128a in radio-resistance in 
glioma cells, and to clarify its mechanism.

Materials and methods

Cell culture

The glioma cell line U87 was obtained from the 
Cell Bank of the Chinese Academy of Sciences 
(Shanghai, China) and cultured in minimum 
essential medium (GE Healthcare Life Sciences, 
Logan, UT, USA) containing 10% fetal bovine 
serum (FBS; GE Healthcare Life Sciences) and 
incubated at 37°C in a humidified atmosphere 
of 5% CO2.

Cell radiation

Cell radiation was performed using X-ray radia-
tion by a linear accelerator source (Elekta, 
Stockholm, Sweden) at a dose rate of 300 cGy/
min. Prior to radiation, a radiation plan was 
designed, and the accuracy of the X-ray radia-
tion doses was verified by a radiation therapy 
physicist using I’mRT MatriXX 2D-ion chamber 
array (IBA Dosimetry, Schwarzenbruck, Ge- 
rmany). According to our previous results, the 
difference of radiation effects was apparent 
between groups of less than and more than 4 
Gy. In the present study, the cells were exposed 
to various doses of X-ray radiation, including 0 
Gy (control group), 2 Gy, and 8 Gy. All groups  
of cells were continuously incubated following 
radiation until the experiments were finished.

Cell transfection

Transfection of microRNA128 was carried out 
using Lipofectamine 2000 agent (Invitrogen) 
according to the manufacturer’s instructions. 
Pre-microRNA-128-1 oligonucleotides (Ambion) 
and reporter plasmids were transfected into 
U87 with microRNA-128 at a final concentration 
of 50 nM. The pri-miR-128-1 lentiviral construct 
was used for establishing U87 cells constitu-

tively overexpressing miR-128-1, according to 
the manufacturer’s instructions (System Bios- 
ciences).

Cell growth curve

The cells were seeded in 24-well plates at a 
density of 5×104 cells/0.5 ml on day 0. If the 
cells need to be irradiated according with the 
experimental groups, the U87 cells were imme-
diately exposed to X-ray radiation. Every 24 h, 
the number of cells in three wells was quanti-
fied using a cell counter (Inno-AllianceBiotech, 
Wilmington, DE, USA) and the mean was calcu-
lated. The results are presented as the mean ± 
standard error of three independent experi- 
ments.

Cell cycle

To analyze the cell cycle, glioma cells were fixed 
with 70% ethanol, re-suspended in PBS/1% 
FBS, and treated with ribonuclease (Beyotime 
Institute of Biotechnology, Haimen, China). PI 
was added to the cells and the samples were 
then analyzed by FCM (Becton-Dickinson). Cell 
cycle profile analysis of the DNA histograms of 
integrated red fluorescence was performed 
with ModFit LT 2.0 (Verity Software, Inc., 
Topsham, ME, USA).

Cell senescence

Senescence-associated β-galactosidase (SA-β-
Gal) staining was used to detect the senes-
cence ratio. SA-β-Gal staining was performed 
using the SA-β-Gal Kit (Beyotime Institute of 
Biotechnology) following the manufacturer’s 
instructions. The cells were considered to be 
positive when the cytoplasm was stained with 
SA-β-Gal.

Western blot analysis

Total protein was extracted with lysis buffer 
(150 mM NaCl, 50 mM Tris with pH 7.4, 1% 
NP40, 0.1% SDS, 0.5% sodium deoxycholate), 
supplemented with protease inhibitors (CWBio, 
Inc., Beijing, China). After lysis on ice for 30 
min, the lysate was centrifuged at 10,000×g 
for 15 min at 4°C. The protein concentration in 
each sample extract was detected using the 
bicinchoninic acid assay (CWBio, Inc.). SDS-
PAGE was performed on 15% polyacrylamide 
gels, with 40 μg of protein sample per lane. 
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Following electrophoresis, the protein was 
transferred to nitrocellulose membranes and 
incubated in 5% non-fat milk at room tempera-
ture for 2 h. Subsequently, the membranes 
were incubated overnight at 4°C with a primary 
polyclonal rabbit anti-human antibody for Bmi-1 
(sc-10745; Santa Cruz Biotechnology, Dallas, 
TX, USA). Subsequent to being washed three 
times using PBS, the membrane was incubated 
with an appropriate concentration of horserad-
ish peroxidase-conjugated anti-rabbit second-
ary antibody (CWBio, Inc.) for 2 h. Following 
additional three washes with PBS, the specific 
protein band was visualized using an enhanced 
chemiluminescence kit (CWBio, Inc.).

RT-PCR analysis

Total RNA was extracted from U87 glioma cells 
in accordance with the instructions Ultrapure 
RNA kit (CwBio, Inc., Beijing, China) for Bmi-1 or 
the miRNApure Mini kit (CwBio, Inc.) for microR-
NA-128. The RNA was reverse transcribed 
using the HiFi-MMLV cDNA kit (CwBio, Inc.) for 
Bmi-1 or the miRNA cDNA kit (CwBio, Inc.) for 
microRNA-128. The cDNA was subsequently 
amplified using UltraSYBR Mixture (with ROX; 
CwBio, Inc.) for Bmi-1 or the Real-Time PCR 
Assay kit (CwBio, Inc.) for microRNA-128. 
β-actin (ACTB) mRNA (for Bmi-1) or small nucle-
ar RNA U6 (for microRNA-128) expression lev-
els were used as an internal control to normal-
ize the data. The primers for Bmi-1 were 
obtained from CwBio, Inc. (cat. no. CW0900). 
The primers for microRNA-128 were also syn-
thesized by CwBio, Inc. The primers used in the 
present study were as follows: Bmi-1, forward 
5’-TCC ACC TCT TCT TGT TTG CCT-3’, and reverse 

cation at 95°C for 15 sec and 60°C for 60 sec. 
The relative miRNA and mRNA expression lev-
els were calculated using the ΔΔCT method.

Statistics 

Statistical analysis was done using SPSS 17.0 
statistical software (SPSS, Inc., Chicago, IL, 
USA). The results are expressed as mean ± 
standard deviation. Student’s t-test (unpaired) 
and one-way ANOVA was used to evaluate the 
statistically significant differences. P<0.05 was 
considered statistically significant.

Results 

Overexpression of microRNA-128 can inhibit 
cell growth of U87 glioma cells

Following transduction with a lentiviral vector 
containing the primary transcript of microR-
NA-128 (pre-miR-128-1), the U87 glioma cells 
could produce high levels of mature microR-
NA-128 (Figure 1A). The U87 cells of trans-
duced group (pre-miR128) and negative control 
group (NC) were then cultured and observed. 
The proliferation of pre-miR128 group was 
inhibited in comparison with NC group (Figure 
1B).

Overexpression of microRNA-128 can increase 
the radio-sensitivity by increasing cellular 
senescence in U87 glioma cells

In our previous study, U87 glioma cells showed 
no cell apoptosis but cellular senescence fol-
lowing exposure to X-ray radiation [17]. To inves-
tigate whether overexpression of microRNA-128 
could affect cellular radio-sensitivity, the U87 

Figure 1. Overexpression of microRNA-128 inhibits cell growth of U87 glioma 
cells. A: Real-time PCR analysis of microRNA-128 in U87 cells after transfec-
tion with pre-mi128 or negative control for 48 h. Pre-miR-128 and negative 
control (NC) were transfected into U87 using Lipofectamine 2000 (Invitro-
gen). B: Cell growth curve of U87 cells after treatment with negative control 
or miR-128 as above. Values represent means ± standard deviation (SD) for 
three wells. * means p value ≤0.05, all compared with control.

5’-GAA GAA GTT GCT GAT GAC 
CCA-3’. U6, forward 5’-GCT 
TCG GCA GCA CAT ATA CTA 
AAAT-3’; and miRNA-128a, for-
ward 5’-CAC AGT GAA CCG GTC 
TCTTT-3’. All methods were 
conducted according to the 
manufacturer’s instructions.

The mRNA and miRNA expres-
sion levels were measured  
by qRT-PCR using a LC-480II 
thermal cycler (Roche Di- 
agnostics, Basel, Switzerland). 
The cycling conditions were as 
follows: 95°C for 10 min, fol-
lowed by 40 cycles of amplifi-
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cells of NC and transduced groups were ex- 
posed to 2 and 8 Gy X-ray radiation. Cell growth 
was inhibited more significantly in the trans-
duced group than the NC group (Figure 2A). 
Meanwhile, cellular senescence was increased 
in the transduced group (Figure 2B, 2C).

Overexpression of microRNA-128 can de-
crease Bmi-1 expression following exposure to 
X-ray radiation in U87 glioma cells

In our previous study, Bmi-1 expression could 
be increased following exposure to X-ray radia-
tion in a dose-dependent manner. Meanwhile, 

microRNA-128 expression was decreased [18]. 
To investigate the relationship between microR-
NA-128 and Bmi-1, the expression of Bmi-1  
was detected by Western blot (Figure 3A) and 
RT-PCR (Figure 3B). The results show that over-
expression of microRNA-128 can significantly 
decrease Bmi-1 expression of both protein and 
mRNA. Following 72 h of exposure to X-ray radi-
ation, the expression of Bmi-1 increased signifi-
cantly at 8 Gy dose in NC group, which was  
consistent with our previous result [17, 18]. 
However, in the pre-MicroRNA128 group, 
expression of Bmi-1 was inhibited (Figure 3C, 
3D).

In our previous study, we showed that Bmi-1 
may be involved in regulation of cell cycle 
phase. After treatment with negative control or 
miR-128 as above, U87 cells were exposed to  
2 Gy and 8 Gy X-ray radiations respectively. 
Following 72 h of exposure to X-ray radiation, 
cell cycle phase was detected and analyzed by 
flow cytometry (Figure 4A). In NC group, the 
results of cell cycle phase was accordance with 
the previous study [17]. In the pre-MicroR-
NA128 group, the manner of cell cycle phase 
was different from the NC group because there 
was not significant changes regardless of radia-
tion dose (Figure 4B). In comparison to the 
matched NC group, the percent of G2/M phase 
was decreased in pre-MicroRNA128 group, 
whereas the percent of G0/G1 phase was in- 
creased.

Discussion 

Radio-resistance is always a challenge for the 
treatment of glioma. Classical treatment of glio-
blastoma includes surgical resection followed 
by radiation and chemotherapy. Many patients 
tumors recurred in one year even if they had  
a good response in the previous treatment  
[19]. Apoptosis plays an important role in tumor  
suppression after radiation [20], but recently 
some researchers revealed that radiation can 
induced senescence instead of apoptosis in 
some tumors, such as breast cancer, lung can-
cer and colon cancer [21, 22]. 

Cellular senescence plays an important role in 
tumor suppression [23]. Collado et al. found 
that normal cells lost the proliferative capacity 
and stayed irreversibly in a stable form of cell 
cycle at the ending stage in some situation. In 
contrast, tumor cells were believed to lose the 
ability of senescence [24]. In some situations, 

Figure 2. Overexpression of microRNA-128 increas-
es radio-sensitivity by increasing cellular senescence 
in U87 glioma cells. A: Cell growth curve of U87 cells 
exposed to 2 and 8 Gy X-ray radiation after treatment 
with negative control or miR-128 as above. Values 
represent mean ± standard deviation (SD) for three 
wells. *mean p value ≤0.05, all compared with nega-
tive control. B: Following 72 h of exposure to X-ray 
radiation at 2 and 8 Gy doses, the U87 glioma cells 
were treated by SA-β-Gal staining and images were 
captured under phase-contrast microscopy. C: Un-
der the microscope the SA-β-Gal positive cells were 
counted and the quantitative results are presented 
as the mean ± standard deviation of three indepen-
dent experiments. *P<0.05 vs. control. **P<0.05 
comparison among groups.
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such as radiation or chemotherapy, tumor cells 
can be induced to undergo senescence again, 
which can help suppress the proliferation of 
tumor [25]. In our previous study, we deter-
mined that U87MG, an glioblastoma cell line, 
only underwent senescence following exposure 
to radiation instead of apoptosis [17]. In the 
present study, our results showed that increas-
ing microRNA-128 in glioma cells can prevent 
them from senescent evading before and after 
exposure to radiation. Cellular senescence 
could be increased resulting in the growth of 
glioblastoma, which can be induced by radia-
tion or genetic manipulation. 

MicroRNA-128 was found to be lower in glioma 
tissues compared to normal tissue [26, 27]. It 
is reported that microRNA128 is expressed 
abundantly in mature differentiated neurons 
but is absent in neural stem cells, which are 
associated with differentiation of neural cells 
[28]. It is known microRNA-128 could be as a 
tumor suppressor in glioblastoma and medul-
loblastoma [12, 29]. One of the mechanisms is 
through the suppression towards to Bmi-1. 
Bmi-1 is the downstream target gene of mircoR-
NA128 and is associated with self-renewal and 
differentiation of neural stem cells [16, 30] and 
can promote glioma growth [15]. 

glioma through the Bmi-1 associated cellular 
senescent pathway. Bmi-1 can control the 
tumor development through the Ink4a/Arf path-
way in glioma [15]. p16Ink4a is one of the hall-
marks of cellular senescence [31]. CDK4, a key 
enzyme in G1-S transformation, can be inhibit-
ed by p16Ink4a. In theory, if the Bmi-1 expression 
increases, it will suppress p16Ink4a resulting in 
unregulated CDK4, leading to S phase and eva-
sion and senescence. Therefore, the mecha-
nism of overexpression of microRNA-128 inter-
venes through inhibition of Bmi-1, so that 
glioma cells are forced to undergo senescence 
again.

In conclusion, the results of our study suggest 
that overexpression of microRNA-128 can 
increase the radio-sensitivity of glioma cells 
through its target, Bmi-1. The possible mecha-
nism to inhibit senescent evasion of glioma 
cells. These data provide a novel view on solv-
ing radio-resistance of glioma and suggest a 
new strategy for glioma radiation treatment 
regimens.
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